ORIGINAL ARTICLE

Efficacy of Prophylactic Intracameral Moxifloxacin in Cataract Surgery

SANAULLAH KHAN, KASHIF RAZA KHAN, NAZEER AHMAD AASI

ABSTRACT

Purpose: To determine the efficacy of prophylactic intracameral moxifloxacin 0.5% ophthalmic solution (Vigamox) in preventing postoperative endophthalmitis in patients having cataract surgery.

Material and methods: The study was conducted at Alkhair Lions Eye Hospital, Lahore, from February 2010 to April 2011. Preoperative and final 1-month postoperative anterior chamber reaction was assessed in 650 eyes that had cataract surgery with intracameral moxifloxacin. All eyes received 0.1 mL intracameral moxifloxacin 0.5% ophthalmic solution containing 500 mg of moxifloxacin as the last step of cataract surgery. Patients were followed up for one month. Patients with any major intraoperative complication or who were lost to follow-up were excluded.

Results: 615 eyes completed the study. The mean age was 69.5 years (range 48 to 84 years). All eyes had quiet anterior chamber preoperatively and had trace to +2 cells and flare anterior chamber reaction only on the first day after surgery. Postoperative evaluation was done on first day, after one week and finally after one month. There was no anterior chamber reaction and no endopthalmitis.

Conclusion: Intracameral moxifloxacin 0.5mg/mL appeared to be effective in preventing postop anterior chamber reaction and ultimately endophthalmitis in patients undergoing cataract extraction.

Key words: Prophylactic intracameral moxifloxacin, cataract,

INTRODUCTION

Postoperative endophthalmitis has always been a major threat and concern for the ophthalmologists all over the world. Postoperative anterior chamber reaction is an important predictor for this worst complication. Different methods have been adopted for the prevention of endopthalmitis. The use of prophylactic intracameral antibiotics is one of them. Among the antibiotics given intracamerally, most commonly used are cefuroxime and vancomycin¹.

Before the introduction of moxifloxacin ophthalmic solution 0.5% (Vigamox), many surgeons used intracameral vancomycin at the conclusion of cataract surgery as part of the prophylactic regimen². Although the risk for endophthalmitis was reduced with vancomycin, there was no strong proof that vancomycin prevents endophthalmitis^{3,4}. In addition, one study conducted by Axer-Siegel et al showed that vancomycin increased the risk for clinically macular edema (CSME) as well as cystoids macular edema (CME) seen on fluorescein angiography 1 month and 4 months after cataract surgery⁵. Moreover, because of its potency, vancomycin has generally been reserved for treatment of infections that are not efficiently treatable by other drugs. Issues have been raised regarding the emergence of vancomycin-resistant

Department of Ophthalmology, Nawaz Sharif Social Security Hospital, Lahore

Correspondence to Dr Sanaullah Khan, Associate Professor of Ophthalmology, Cell: 0333-4275690

enterococci, an increase in intermediate resistance to vancomycin in coagulase-negative staphylococci, and methicillin-resistant Staphylococcus aureus. These issues and the lack of scientific proof of vancomycin's efficacy in preventing endophthalmitis led to a joint statement by the American Academy of Ophthalmology and the U.S. Centers for Disease Control discouraging the routine prophylactic use of vancomycin in ocular surgery^{6,7}.

In contrast, in a preliminary report of the ESCRS Endophthalmitis Study Group, intracameral cefuroxime was shown to significantly reduce the risk for developing endophthalmitis after phacoemulsification cataract surgery^{8,9}. However, like vancomycin, cefuroxime is available in a systemic preparation that must be reconstituted using saline solution before it can safely be delivered to the eye. Reconstituting the drug for intracameral use may increase the risk for toxic anterior segment syndrome (TASS) because an undesired concentration of the drug may be inadvertently injected if a mistake occurs during the preparation or dilution process. It is well known that incorrect drug concentration, incorrect pH, and incorrect osmolality can cause TASS¹⁰.

Considering the possible complications with vancomycin and cefuroxime, moxifloxacin seems to be the better choice of antibiotic for endophthalmitis prophylaxis because of its broad-spectrum coverage and mode of action. ¹¹ Moxifloxacin is a fourthgeneration fluoroquinolone antibacterial agent that is active against a broad spectrum of gram-positive and

gram-negative ocular atypical pathogens, microorganisms, and anaerobes ¹²⁻¹³ (Tables 1 to 3). The ophthalmic solution is isotonic and formulated at pH 6.8 with an osmolality of approximately 290 description, (product moxifloxacin hydrochloride ophthalmic solution 0.5%, Alcon Laboratories, reference: AAA083-0604); both values are within the compatible range for humans (pH 6.5) to 8.5 and osmolality 200 to 400 mOsm/kg). Vigamox is also a self-preserved (no added preservatives) commercial ophthalmic formulation that requires no special preparation for intracameral delivery, reducing the risk for TASS¹³. In addition, early studies of rabbit eyes did not show intraocular toxicity after injection of intravitreal or intracameral moxifloxacin¹².

PATIENTS AND METHODS

The study was conducted from February 2010 to April 2011 on patients of age 45 to 85 years with no ocular pathology other than cataract. Exclusion criteria included glaucoma, retinopathy, maculopathy, media opacity other than cataract (cornea or vitreous), and visual pathway problems. Patients with uveitis, diabetes, corneal endothelial disease, or pseudoexfoliation and those who were taking systemic immunosuppressants or anticoagulants were also excluded. Other exclusion criteria were intraoperative complications or difficulties and prolonged surgery and patients lost in follow up.

Pupils were dilated with a solution of tropicamide 1%. All surgeries were performed using peribulbar anesthesia of Bupivacaine and Lignocaine. Uneventful extracapsualr cataract extracton with implantation of IOL was performed. At the end of surgery, intracameral moxifoxacin was given to each patient. The reason we went to intracameral antibiotic was that it just made sense to put the antibiotic at the site of potential infection.

Preoperatively, patients received 1 drop of topical Vigamox every 15 minutes at least 4 times. Povidone-iodine 0.5% was instilled into the cul de sac. At the start of the operating day, the contents of a newly opened bottle of Vigamox was aspirated into a sterile 10 cc syringe and set aside. With a tuberculin syringe, a volume slightly in excess of 0.1 mL (0.3 to 0.5 mL) of the pure moxifloxacin 0.5% ophthalmic solution was then aspirated from the 10 cc svringe. No solution, including saline, was added to dilute the commercial preparation. The excess amount was discarded, leaving 0.1 mL in the tuberculin syringe ready for injection into the anterior chamber. This volume contained 0.5 mg of the nonpreserved moxifloxacin with a pH of 6.8 and an osmolality of approximately 290mOsm/kg. The solution prepared in the syringe was injected using a 27-gauge cannula through the incision as the last step of cataract extraction and IOL implantation. Postoperative antibiotics included oral ciprofloxacin 500 mg, 1 tablet twice a day for 5 days. For First 48 hours, topical Tobramycin was given every 2 hourly. The Tobramycin was then reduced to 4 times a day for three weeks. Topical prednisolone acetate 1% (Pred Forte) was also given postoperatively using the same dosage schedule used for Tobramycin.

The patients were scheduled for follow-up at 1 day, 1 week, and 1 month after surgery. Anterior chamber reaction, expressed as cells and flare intensity, was graded by an independent observer using the Hogan system¹⁴. All observations were done using a slit lamp biomicroscope 1 day and 1 and 4 weeks after surgery.

RESULTS

Out of 650 eyes, 615 eyes completed the study. All patients were Asian. The mean age of the 295 men and 320 women was 69.5 years (range 48 to 84 years). All eyes had trace to +2 cells and flare only on the first day after cataract surgery. On subsequent follow ups, anterior chamber was quiet in 99.18% (610 Patients). Only five patients had anterior chamber reaction on second follow up visit and were given topical steroids in higher frequency, which cured the uveitic reaction. No patient ended with endophthalmitis at the completion of study.

Table 1. Susceptibility of gram-positive species to moxifloxacin MIC50 (mg/ml.)

moxifioxacin iviiC50 (mg/mL)	
Bacterial Species	Moxifloxacin
Staphylococcus aureus	0.03
Staphylococcus epidermidis	0.06
Staphylococcus haemolyticus	0.06
Staphylococcus saprophyticus	0.03, 0.13
Staphylococcus lugdunensis	0.13
Staphylococcus hominis	0.03, 0.06
Staphylococcus simulans	0.03
Staphylococcus pasteuri	0.06
Staphylococcus warneri	0.03, 0.06
Streptococcus pneumoniae	0.06, 0.13
Streptococcus mitis	0.13
Streptococcus viridans group	0.13
Streptococcus pyogenes	0.13, 0.25
Enterococcus faecalis	0.19, 0.25
Micrococcus luteus	0.50
Kocuria species	0.25
Bacillus cereus	0.09, 0.13
Bacillus pumilus	0.13
Bacillus subtilis	0.16
Corynebacterium accolens	0.03
Corynebacterium macginleyi	0.03
Corynebacterium propinquum	0.25
Corynebacterium pseudodiphtheriticum	0.25

MIC = minimum inhibitory concentration

Table 2. Susceptibility of gram-negative species to moxifloxacin MIC_{50} (mg/mL)

Bacterial species	Moxifloxacin
Aeromonas caviae	0.13
Citrobacter koseri	0.03
Enterobacter aerogenes	0.06, 0.25
Enterobacter cloacae	0.03, 0.13
Enterobacter hormaechei	0.13
Escherichia coli	0.008, 0.06
Klebsiella oxytoca	0.03, 0.25
Klebsiella pneumoniae	0.03, 0.13
Morganella morgagnii	0.06, 0.50
Pantoea agglomerans	0.03, 0.06
Proteus mirabilis	0.06, 0.50
Serratia marcescens	0.25, 0.50
Achromobacter xylosoxidans	2.0, 4.0
Acinetobacter baumannii	0.03, 0.13
Acinetobacter calcoaceticus	0.016, 0.06
Acinetobacter johnsonii	
0.16, 0.13	
Acinetobacter junii	0.06
Acinetobacter genospecies 3	0.016, 0.06
Chryseobacterium indologenes	0.25
Chryseomonas luteola	0.13
Stenotrophomonas maltophilia	0.13, 1.0
Pseudomonas aeruginosa	0.50, 2.0, 4.0
Pseudomonas oryzihabitans	0.13
Pseudomonas stutzeri	0.25
Haemophilus influenza	0.016, 0.03, 0.39
Moraxella catarrhalis	0.03, 0.047, 0.06
Moraxella osloensis	0.13
Neisseria perflava	0.03

Table 3. Susceptibility of atypical and anaerobic species to moxifloxacin MIC_{50} (mg/mL)

Bacterial Species	Moxifloxacin	
Atypical		
Mycobacterium avium	3.2	
Mycobacterium marinum	0.4	
Mycobacterium chelonae	1.6, 8.0	
Mycobacterium abscessus	8.0	
Mycobacterium fortuitum	0.06	
Mycobacterium kansasii	0.06	
Chlamydia trachomatis	0.03	
Anaerobe		
Propionibacterium acnes	0.25	
Bacteroides fragilis	0.25	
Clostridium perfringens	0.50	
Peptostreptococcus species	0.25	

To our knowledge, this is the first report of a topical ophthalmic preparation applied through the intraocular route as a prophylactic agent in cataract surgery. ¹³ Our study evaluated the efficacy of injecting intracameral Vigamox in human eyes having cataract surgery to prevent postoperative endophthalmitis.

DISCUSSION

Endophthalmitis cases after cataract surgery increased from 1994 to 2001, with a reported incidence of 0.215%¹⁵. With only povidone iodine prophylaxis, incidence of endophthalmitis is 0.3-0.5% in Europe^{16, 17} and 0.015% in USA. While in Pakistan this rate was found to be 0.6%¹⁸. The European Society of Cataract and Refractive Surgery (ESCRS) study has found the lowest observed incidence rates were for the group which received both intracameral and perioperative topical antibiotics9. Thus, there is a need for protective antibiotics to combat the rise and to better treat patients, especially in the light of increasing antibacterial resistance among causative organisms. Of the prophylaxis methods for cataract surgery, only povidone-iodine received intermediate clinical recommendation, as discussed by Ciulla et al¹⁹ in a literature review of endophthalmitis prophylaxis. In addition, Isenberg et al. 20 found that povidone-iodine reduces conjunctival flora by 91% for colony-forming units and 51% for species when applied alone to the eye just before surgery; when applied in conjunction with a topical antibiotic, it produced a synergistic effect that led to sterilization of 83% of the eye. Although antiseptic agents such as povidone-iodine are effective for ocular surface decontamination, antibiotics with favorable pharmacodynamic properties are required to deliver ocular protection.

Fluoroquinolones were introduced for treatment of corneal and conjunctival infections; however, these antibiotics found a greater role in prophylaxis before surgery to prevent endophthalmitis. New generations of fluoroquinolones were introduced to counteract resistance to the second-generation agents. These include third-generation (levofloxacin) and fourthgeneration (moxifloxacin and gatifloxacin) fluouroquinolones¹¹.

Several studies 11,13,21,22 found moxifloxacin, a fourthgeneration antibiotic, to be superior in terms of potency. It has the lowest mean inhibitory concentration (MIC) bacterial for most endophthalmitis isolates¹³; thus, it seems to be a better choice for prophylactic antibiotic. moxifloxacin injection we used was a commercially available ophthalmic solution labeled for topical use with the brand name Vigamox. Vigamox does not contain preservatives, which in addition to its broadspectrum activity led us to investigate its intraocular use. Vigamox has a pH of 6.8 and an osmolality of 290 mOsm/kg; both values are within the compatible range for humans.

Our choice to analyze the data 4 weeks after surgery is supported by observations in previous studies of intracameral instillation of vancomycin, cefuroxime, and cefotaxime^{3,23,24}.

Regarding efficacy, the drug level in the target (in this case the aqueous) becomes paramount. Antibiotic concentrations over time should be established and should be above the MIC₉₀ levels of the most common, not endophthalmitis-causing pathogens. We injected 0.1mL of Vigamox 0.5% solution, or an equivalent of 0.5 mg (500 mg) of moxifloxacin, into the capsular bag. With an IOL positioned in the capsular bag, the estimated fluid capacity of the combined anterior and posterior chambers after crystalline lens extraction is approximately 0.525 mL.²⁵ Granting that we reestablished this volume with balanced salt solution (BSS) and the 0.1 mL of antibiotic at the conclusion of the surgery, the concentration of moxifloxacin would be 500 mg in 0.525mL, or 952mg/mL. The median MIC (in mg/mL) of even moxifloxacinendophthalmitis resistant isolates has established to be no higher than 3 mg/mL¹¹.

Therefore, the initial moxifloxacin levels in the anterior chamber after injection in our cases was at least 300 times the median MICs of endophthalmitiscausing organisms.

So therapeutic levels were achieved peroperatively and it proved to be safe to prevent postoperative anterior chamber reaction and ultimately effective for the prevention of endophthalmitis.

CONCLUSION

Due to poor socio-economic status in Pakistan, mostly cataract surgery is done by ECCE technique especially in peripheral areas where follow up of such patients very poor. Moxifloxacin is intracamerally appeared to be nontoxic in terms of postoperative anterior chamber reaction. This study established not only that moxifloxacin can safely be given intracamerally; but also that it is effective in preventing endophthalmitis. So, moxifloxacin given intracamerally is an effective method to prevent drastic complication of endopthalmitis especially in Pakistan.

REFERENCES

- Masket S. Preventing, diagnosing, and treating endophthalmitis [guest editorial]. J Cataract Refract Surg 1998; 24:725–726
- Gills JP. Filters and antibiotics in irrigating solution for cataract surgery [letter]. J Cataract Refract Surg 1991; 17:385

- Gimbel HV, Sun R, de Brof BM. Prophylactic intracameral antibiotics during cataract surgery: the incidence of endophthalmitis and corneal endothelial cell loss. Eur J Implant Refract Surg 1994; 6:280–285
- Gimbel HV, Sun R. Prophylactic intracameral vancomycin and CME [letter]. Ophthalmology 2000; 107:1614–1615
- Axer-Siegel R, Stiebel-Kalish H, Rosenblatt I, et al. Cystoid macular edema after cataract surgery with intraocular vancomycin. Ophthalmology 1999; 106:1660–1664
- Seppa"la" H, Al-Juhaish M, Ja"rvinen H, et al. Effect of prophylactic antibiotics on antimicrobial resistance of viridans streptococci in the normal flora of cataract surgery patients. J Cataract Refract Surg 2004; 30:307–315
- Centers for Disease Control. Staphylococcus aureus resistant to vancomycin-United States, 2002. MMWR Morb Mortal Wkly Rep 2002; 51:565–567
- Barry P, Seal DV, Gettinby G, et al. ESCRS study of prophylaxis of postoperative endophthalmitis after cataract surgery: preliminary report of principal results from a European multicenter study; the ESCRS Endophthalmitis Study Group. J Cataract Refract Surg 2006; 32:407–410
- Seal DV, Barry P, Gettinby G, et al. ESCRS study of prophylaxis of postoperative endophthalmitis after cataract surgery: case for a European multicenter study; the ESCRS Endophthalmitis Study Group. J Cataract Refract Surg 2006; 32:396–406
- Mamalis N, Edelhauser HF, Dawson DG, et al. Toxic anterior segment syndrome. J Cataract Refract Surg 2006; 32:324–333
- 11. Mather R, Karenchak LM, Romanowski EG, Kowalski RP. Fourth generation
- fluoroquinolones: new weapons in the arsenal of ophthalmic antibiotics. Am J Ophthalmol 2002; 133:463–466
- 13. Kowalski RP, Romanowski EG, Mah FS, et al. Intracameral Vigamox_
- (moxifloxacin 0.5%) is non-toxic and effective in preventing endophthalmitis in a rabbit model. Am J Ophthalmol 2005; 140:497–504
- Stroman DW, Dajcs JJ, Cupp GA, Schlech BA. In vitro and in vivo potency of moxifloxacin and moxifloxacin ophthalmic solution 0.5%; a new topical fluoroquinolone. Surv Ophthalmol 2005; 50(suppl): S16–S31
- Nussenblatt RB, Whitcup SM, Palestine AG. Uveitis: Fundamentals and Clinical Practice, 2nd ed. St Louis, MO, Mosby-Year Book, 1996; 61–62
- West ES, Behrens A, McDonnell PJ, et al. The incidence of endophthalmitis after cataract surgery among the U.S. Medicare population between 1994 and 2001. Ophthalmology 2005; 112:1388–1394
- Patwardhan A, Rao GP, Saha K, Craig EA. Incidence and outcomes evaluation of endophthalmitis management after phacoemulsification and 3-piece silicone intraocular lens implantation over 6 years in a single eye unit. J Cataract Refract Surg. 2006; 32: 1018-21.

- ESCRS Endophthalmitis Study Group: Prophylaxis of postoperative endophthalmitis following cataract surgery: results of the ESCRS multi-centre study and identification of risk factors. J Cataract Refract Surg. 2007; 33: 978-88.
- Babar TF, Masud Z, Saeed Nasir, et al. A two years audit of admitted patients with the diagnosis of endophthalmitis. Pak J Med Res Sep. 2003; 42: 105-11.
- Ciulla TA, Starr MB, Masket S. Bacterial endophthalmitis prophylaxis for cataract surgery; an evidence-based update. Ophthalmology 2002; 109:13– 24; questions for CME credit request, 25–26
- Isenberg SJ, Apt L, Yoshimori R, et al. Efficacy of topical povidone-iodine during the first week after ophthalmic surgery. Am J Ophthalmol 1997; 124:31– 35.

- Alfonso E, Crider J. Ophthalmic infections and their anti-infective challenges. Surv Ophthalmol 2005; 50(suppl):S1–S6.
- Schlech BA, Alfonso E. Overview of the potency of moxifloxacin ophthalmic solution 0.5% (Vigamox_). Surv Ophthalmol 2005; 50(Suppl):S7–S15
- Montan PG, Wejde G, Setterquist H, et al. Prophylactic intracameral cefuroxime: evaluation of safety and kinetics in cataract surgery. J Cataract Refract Surg 2002; 28:982–987
- 26. Peyman GA, Sathar ML, May DR. Intraocular gentamicin as intraoperative prophylaxis in South India eye camps. Br J Ophthalmol 1977; 61:260–262
- Mindel JS. Pharmacokinetics. In: Tasman W, Jaeger EA, eds, Duane's
- Foundations of Clinical Ophthalmology on CD-ROM. Philadelphia, PA, Lippincott Williams & Wilkins, 2006; vol. 3, chap 23.